
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  28 (1993) 2233--2237 

The a.c. equivalent circuit of dielectric materials 
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An equivalent circuit for dielectrics exhibiting frequency dispersion has been obtained using 
a new multiple-arc analysis in conjunction with relaxation time distribution (RTD). Subsequently, 
an equivalent network was derived for a zinc oxide (ZnO)-based ceramic varistor at low electric 
fields. Reported measurements of ZnO varistor resistivity and permittivity were found to 
correspond satisfactorily to those obtained from the network over the frequency range 
30 Hz-1 0 MHz. The new methodology is, in principle, applicable to any analysable dielectric data. 

1. I n t r o d u c t i o n  
The theory of dielectrics has been developed ad- 
equately for a limited number of materials. The disper- 
sion characteristics of these dielectrics with frequency 
are described in terms of a simple Debye single re- 
laxation approach [1]. However, the majority of 
dielectrics exhibit a pronounced deviation from the 
simplified Debye treatment. Among these dielectrics, 
which are of significant engineering applications, are 
zinc oxide(ZnO)-based ceramics [2, 3], polymers 
[4, 5], and metal composites such as LiTi [6, 7], and 
LiNi [8]. 

In addition to the attempts made to analyse and 
understand the anomalous behaviour of dielectrics, 
considerable effort has also been made to develop 
equivalent circuits representing their dispersion with 
frequency [9 11]. For  instance, in ZnO varistors 
a number of circuits has been proposed to account for 
the dispersion at low as well as high electric fields 
[3, 12]. However, those circuits reflect a limited range 
of measured data. Hence, a significant part of the 
characteristics range is, in fact, irreconcilable with the 
circuit predictions. The bases adopted in those circuit 
developments relied mainly in either data fitting over 
a specified range or describing the behaviour more or 
less in terms of a single relaxation time. As is evident 
upon many occasions, the representation of a dielec- 
tric constant in the complex plane indicates many 
relaxation times. This is derived from a single circular 
arc relation in the plane, in comparison to a semi- 
circle for a single relaxation time [13]. Recently, one of 
the authors has developed a relaxation time distribu- 
tion formula for dielectrics exhibiting double arcs 
in the complex plane [14]. This has been extended 
further to treat multiple-arc relations whereby a gene- 
ralized formula has been presented [15]. The new 
approach has been applied in analysing the data of 
zinc oxide and polydiacetylene dielectrics [16]. This 
paper reports the use of multiple-arc analysis together 
with the RTD function in deriving equivalent circuits 
for dielectrics. While the method developed here is, in 
principle, applicable to any analysable data, the paper 
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is confined to the example of network derivation for 
ZnO varistors at low electric fields. 

2. Dielectric dispersion relations 
Dielectric constants are generally expressed as com- 
plex quantities; e* = ~' - j a " .  ~' and ~" represent, re- 
spectively, the charging and loss components that are 
functions of frequency. In the s"-e' complex plane, the 
frequency dependence describes a semi-circular locus 
for the system with a single relaxation time. However, 
dielectrics exhibiting circular arcs are characterized by 
many relaxation times with ~*, for an arc, taking the 
form [17] 

e* = a~ + 1 -t-tat'-c0To "1-= (1) 

The imaginary part of a*, which is relevant to the 
present work, is given as 

�89 - ~oo)cos (~n/2) 
~" = (2) 

cosh(1 - cOS + sin((xn/2) 

with S = ln(c0%), as and ~ are the static and high- 
frequency constants, respectively, ~ is a constant effec- 
tively representing the spread in relaxation times and 
takes a value between 0 and 1, and % denotes the most 
probable relaxation time. The corresponding RTD 
function takes the form [13, 17] 

1 sin (c~) 
f ( u )  - (3) 

2r~ cosh(1 - c~)u - cos(c~) 

with 

f ~ f(u)  = (4) du 1 
- s o  

where u = ln(z/%). 
With ~ = 0, Equations 1 and 2 reduce to the well- 

known Debye expressions for the dielectric constant, 
whilst Equation 3 reduces to the Dirac delta function 
representing single relaxation time [-15, 18]. 
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The distribution function given by Equation 3 has 
recently been extended by one of the authors, to a rela- 
tion featuring a multiple-arc plot in the k"-k' plane 
[15] whereby f (u)  becomes 

,z (ks, - koo,)sin(%~) 
f (u)  c 

2L cosh[(1 --- ~5(u + ~ -  --- cos(~,~) n = l  

(5) 

with 

s"(m) = ~ k~(co) (6) 
n = l  

where C = 1/[2rc~~=l(kSn - -  k~,)], [3. = ln(zol/to,), 
and u = ln(t/to~), n designates an arc and m is the 
number of evaluated arcs over the range of frequency 
used. Each term in Equation 6 is determined 
according to Equation 2 using the corresponding 
parameters ks, koo, ~ and %. If !3. values are widely 
separated, the distribution function may feature 
multiple-peak spectra depending on the relative 
magnitudes of (es, - koo,) as well as % values. 

3. RTD funct ion and equivalent  circuit  
For a dispersion relation characterized by a single 
relaxation time, %, the RTD yields a Dirac delta 
function [13] at t = to or u = 0. The simplest network 
representation constitutes a series of R - C  components 
with R C  = % in parallel with a high-frequency 
capacitance, C~, as shown in Fig. 1. Such a circuit 
corresponds adequately to the variation of the parallel 
resistance and capacitance with frequency. With o and 

representing the resistive and capacitive elements, 
respectively, the parallel a.c. conductivity, Op, becomes 

032 k t  
cyp - 1 "~ (/)2,~2 (7) 

On the other hand, for relations featuring multiple 
arcs in the k" - e' complex plane, the continuity of the 
RTD function implies a rather distributed network 
representation. However, for a realizable network, cir- 
cuit with discrete lumped components is often re- 
garded as an appropriate practical choice. With the 
simplified circuit being sought, then the R - C  network 
used for a single relaxation can be employed in a par- 
allel combination of branches [13], each designated 
by the time constant rk = ek/O'k as depicted in Fig. 2. 
Meanwhile, recalling the fact that the total area under 
the f (u) function yields a value of 1, Equation 4, then 
a branch admittance to the total admittance gives the 
branch weighting factor. This, in turn, corresponds to 
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Figure 1 The series R-C circuit and its parallel equivalent 
representing the semicircular dispersion relation. 
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Figure 2 The equivalent circuit representing the circular arc 
dispersion relation. 
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Figure 3 A general RTD function illustrating branch weighting 
factor AA. 

the small area, AA, under the f (u) function at Uk, as 
illustrated in Fig. 3, hence 

Ok 
- AA 

OM 

= f (u)Au[ ,=,k  (8) 

where cyM is the measured a.c. conductivity of the 
dielectric, and ok is the conductivity of the branch 
corresponding to %. The total network conductivity, 
ON, is then 

L 

ON = ~ Ok (9) 
1 

with L being the number of branches used. L depends 
on the effective range in the distribution function f(u), 
as well as the accuracy of representation judged by 
comparing ON with OM. It follows that a branch con- 
ductivity, Ok, becomes 

f.02kktk 
Ok -- 1 + m2"~ = OMf(U)AU[ . . . .  (10a) 

o r  

/ 
a(~k) = t (10b) 

with Uk = ln(~k/Zol). 
Calculation of ak enables finding the branch con- 

ductivity, Ok, using the corresponding time constant, 

1 

o~2~ k ) oMf (uDauk 
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Figure 4 Cole-Cole  plot for ZnO,  T = 22 oC Arc I is reproduced from [3]; Arc II is reproduced from [16]. 

rk" The total a.c. conductivity, ON, can then be evalu- 
ated from Equation 9. 

4. The  e q u i v a l e n t  c i rcu i t  of  a ZnO 
var is to r  

An equivalent circuit was derived for ZnO-based 
ceramic varistors using the approach outlined in Sec- 
tions 2 and 3. 

The data available, in the literature, for ZnO-based 
ceramic lie in the low electric-field range [3]. They 
originate from different methods of measurements as 
illustrated in Fig. 4 for the a"-d  relation where two 
arcs are generated [16]. Detailed account of data 
analysis in terms of multiple-arc method is reported 
elsewhere [15, 16]. The arcs are characterized by the 
following parameters [16]: 

ssl = 1195.0, ~= = 875.0, %1 = 6.78 x 10 ?s, 

~1 = 0.233; 

esii = 1507.0 ,~ ,  = 1185.0,%, -- 65.78x 10-as, 

~. = 0.555. 

The almost non-overlapping feature of the arcs is 
also reflected in the corresponding RTD as evaluated 
by Equation 5 and depicted in Fig. 5. The effective 
u-range is considered to be from - 1 6  to + 16, 
corresponding to z from 7.39 x 10 9-5.83 x 105 s, re- 
spectively. In order to compare OM with oN, OM is 
reproduced using Equations 2 and 6, together with the 
relation o = o~". 

As ~k evaluation requires the substitution of a value 
for oM at a particular frequency, there are no direct 
and explicit rules for the selection of an appropriate 
value for qM at a specified rk. Such a selection is 
therefore regarded as subject to test through different 
schemes, with the ultimate objective of achieving the 
best correspondence between OM and ON. Using OM at 
co = 1/Tk led to ON being lower by more than an order 
of magnitude over a wide range of frequency. On the 
other hand, substituting for points at co > 1/'ok res- 
ulted in a similar divergence but in the lower part  of 
the frequency range. Similarly, by using points at 
co < 1/~k the deviation occurred in the upper part of 

the range. However, from these tests, a different pro- 
cedure of point selection has been devised, as outlined 
below. 

The effective range of u from - 16 to + 16 was 
divided into eight blocks, each having 40 points. The 
block was then divided into two sections. The selec- 
tion was subsequently made through an interchanging 
procedure whereby the points in one section are sub- 
stituted for ~k values corresponding to the other sec- 
tion, with the upper most value being interchanged 
symmetrically with the lowest point in the block. By 
this procedure a satisfactory convergence of ON to OM 
was realized, as illustrated in Fig. 6, where network 
and measured resistivities are compared. Satisfactory 
agreement is almost obtained in comparing network 
and measured parallel dielectric constants, as shown 
in Fig. 7. It is worth pointing out that although the 
effective range has been represented by 320 points, less 
than 160 branches were sufficient to simulate the di- 
electric characteristics over the frequency range from 
30 Hz-10 MHz, as indicated in Figs 6 and 7. The 
values of capacitance and resistance for each of the 
160 branches are shown in Fig. 8 in terms of u with 

ranging from 7.39x 10-9-65.67x 10-3s. These 
values are normalized to unit cross-sectional area and 
unit length of the ZnO-based cei~amic sample. How- 
ever, throughout this scheme of work, the u-domain 
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Figure 5 Relaxation time distribution for a Z n O  varistor. 
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Figure 6 Comparison between measured and computed parallel 
resistivities. (@, �9  Reported measurements from [3], ( ) 
reported best fit to measurements [3], ( x )  computed from the 
equivalent network. 
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Figure 7 Comparison between measured and computed parallel 
dielectric constants. (@, �9 Reported measurement from [3], ( ) 
reported best fit to measurements [3], ( x )  computed from the 
equivalent network. 
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Figure 8 The values of capacitance and resistance for 160 branches 
computed from the equivalent network as a function of u ranging 
from - 1 6  to 0. u=ln('c/'Co2 ), zo2=65 .67x10-3s .  (a, c, e, g) 
Capacitance values, (b, d, f, h) resistance values. 

has been employed to minimize computing time. 
Hence the algorithm is open for further developments 
and optimizations through, for instance, the ~- or c0- 
domains. 

5. C o n c l u s i o n  
A novel approach has been presented to derive the 
equivalent circuit for dielectrics. This was facilitated 
through multiple-arc analysis of the complex dielectric 
constant whereby the relaxation time distribution is 
correlated with the components of the dielectric equi- 
Valent circuit. The new method is 'then applied to the 
data of ZnO-based ceramic, at a low electric field. An 
equivalent circuit was subsequently derived with 160 
parallel branches, each consisting of a simple resist- 
ance-capacitance elements connected in series. The 
measured a.c. resistivity and permittivity agreed satis- 
factorily with those derived from the equivalent net- 
work over the frequency range 30 Hz-10 MHz. The 
algorithm of point substitution adopted in this work 
can be explored further to achieve better agreement 
over a wider range of frequency. 
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